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Abstract Consider a set N of n(> 1) stores with single-item and single-period non-
deterministic demands like in a classic newsvendor setting with holding and penalty
costs only. Assume a risk-pooling single-warehouse centralized inventory ordering
option. Allocation of costs in the centralized inventory ordering corresponds to mod-
elling it as a cooperative cost game whose players are the stores. It has been shown
that when holding and penalty costs are identical for all subsets of stores, the game
based on optimal expected costs has a non empty core (Hartman et al. 2000, Games
Econ Behav 31:26–49; Muller et al. 2002, Games Econ Behav 38:118–126). In this
paper we examine a related inventory centralization game based on demand realiza-
tions that has, in general, an empty core even with identical penalty and holding costs
(Hartman and Dror 2005, IIE Trans Scheduling Logistics 37:93–107). We propose a
repeated cost allocation scheme for dynamic realization games based on allocation
processes introduced by Lehrer (2002a, Int J Game Theor 31:341–351). We prove that
the cost subsequences of the dynamic realization game process, based on Lehrer’s
rules, converge almost surely to either a least square value or the core of the expected
game. We extend the above results to more general dynamic cost games and relax the
independence hypothesis of the sequence of players’ demands at different stages.
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1 Introduction

Consider a situation in which a number of firms or subsidiaries of the same firm
undertake a joint project—for instance, centralization of inventory handling facilities.
An issue of concern in joint projects is to arrive at a cost allocation acceptable to
all parties. Joint ventures that require the resolution of cost (profit) allocation can be
effectively addressed within the framework of cooperative game theory. In this paper
we examine a well known newsvendor inventory centralization setting.

Suppose we have a set of stores that distribute a single product to their customers. A
joint project might consider filling orders from a central facility and shipping directly
to the stores’ customers—as in catalog stores with sample merchandize. Now suppose
that the demand at each of the stores varies randomly with a given distribution function
Fi for store i (i = 1, 2, . . . , n) and parameters specific to each store. Each store may
independently decide to participate in the centralized ordering arrangement. When
participating, the stores would share the costs of the centralized inventory and benefit
from the resulted savings.

There have been a number of studies that examined a combined problem of
optimizing savings from a centralized inventory and allocating the savings in a man-
ner which maintains the cooperation of participants (Parlar 1988; Hartman and Dror
1996; Anupindi and Bassok 1999; Hartman et al. 2000; Hartman and Dror 2003,
2005; Slikker et al. 2005; Burer and Dror 2007). When logistics providers are set-
ting up inventory and distribution coordination, it is usually referred to as supply
chain management. In this context Naurus and Anderson (1996), provide a number
of enlightening examples of cost cutting when inventory management is coordinated
and centralized. If the sharing of benefits is not perceived to be equitable by the firms,
the “partnership” may fall apart and the overall benefits might be lost. As Naurus
and Anderson (1996) point out, “significant hurdles stand between the idea and its
implementation. To begin with, channel members are likely to be skeptical about the
rewards of participation...”.

The focus of this study is the newsvendor problem, and we start with general
remarks regarding the demand distribution and incentives for centralization in an infi-
nitely repeated single period problem.

For general demand distributions Fi , i = 1, 2, . . . , n and store specific holding
and penalty costs there might not be any savings from centralization. Conditions on
demand distributions are discussed in Chen and Lin (1989) and on holding and penalty
costs in Hartman and Dror (2005). In this study we assume inventory models where
the demand at each store is any random variable having null probability of achieving
negative values, and allow for correlated stores’ demands. We assume identical storage
and penalty costs for each store and in the centralized location. Eppen (1979) was the
first to show that in this case savings always occur.

The newsvendor inventory centralization problem examined in the literature is
geared to the expected value cost analysis. However, minimizing expected centralized
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inventory cost might not be a very convincing argument for centralization. A build-in
cost allocation mechanism should provide additional incentives for cooperation. That
is, in each time period the stores reflect on the actual performance of the system in
relation to the anticipated long-run expected performance. The analysis of an on-line
system cost allocation(s) performance versus the performance in expectation is the
main topic of this paper.

The outline of the paper is as follows. Section 2 introduces two games: the newsven-
dor centralization game referred to as the newsvendor expected game and the related
newsvendor realization game. In addition, another related game, the dynamic newsven-
dor realization game is defined. In Sect. 3 we discuss the repeated allocation process
introduced by Lehrer (2002a) and summarize its main findings. In Sect. 4 we apply
Lehrer’s allocation processes (rules R1 and R2, see Lehrer 2002a) to our dynamic
realization games to prove the main results in the paper. Specifically, we prove that
the diagonal allocation sequence based on Lehrer’s rule R1 applied to the dynamic
realization games converges almost surely to some least square value of the expecta-
tion game. The other main result states that any accumulation point of the diagonal
sequence of allocations based on Leherer’s rule R2 belongs almost surely to the core
of the expected game. In Sect. 5 we extend the above results to allocation processes
for more general dynamic cost games. We then relax the independence hypothesis of
the sequence of players’ demands at different stages, replacing it with an appropriate
strong stationarity requirement. Similar almost surely convergence results follow.

2 Inventory centralization in newsvendor environments

Suppose a finite set of stores (newsvendors) that respond to a periodic random demand
(of newspapers) by ordering a certain quantity at the start of every period. Since the
demand is random, in each period a store will face one of two cases: (1) the ordered
quantity is less than the realized demand resulting in lost profit for the store; (2) the
ordered quantity exceeds the realized demand resulting in a disposal cost for the store
since the items (the newspapers) are perishable.

Formally, we consider a set N = {1, . . . , n} of stores. The assumptions of this
model are:

1. Let (�,F , P) be a given probability space. Each store i ∈ N faces a nonnegative
random demand xi , with distribution function Fi and mean µi .

2. The disposal cost is h > 0 per unit and lost profit (penalty) cost is p > 0 per unit.
These costs are the same for all stores and any combination of the stores.

3. The product is ordered once at the start of each period (not reordered), and items on
hand at the beginning of the period cannot be returned. There is no order cost and
no quantity discounts. Both the demand distributions and the costs are common
knowledge. This situation is stationary and infinitely repeated period after period.

4. The cost resulting from an initial inventory of q is

�(x, q) =
{

h(q − x) if q ≥ x
p(x − q) if q < x
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5. Consider a coalition S ⊆ N of stores facing the joint demand xS =∑
i∈S xi with

distribution function FS and expected value µS . Assume that for all coalitions
S ⊆ N , FS ∈ £1 (�,F , P). Hence, E [�(xS, q)] <∞ for all q ∈ R.

The above is a classic newsvendor setting and for all S ⊆ N , we can find a value
qS that minimizes E [�(xS, q)] ; i.e., qS is the optimal order size for S.

We define the newsvendor expected game (N , cE ) (henceforth E-game) as the TU
cost game with characteristic function cE (S) := E [�(xS, qS)] for all ∅ �= S ⊆ N .
Notice that for S ⊆ N , cE (S) ≥ 0 represents the optimal expected cost of holding or
shortage.

Hartman et al. (2000) proves that the core of E-games is non-empty (i.e., E-games
are balanced) for demands with symmetric distribution and for joint multivariate nor-
mal demand distribution. Muller et al. (2002) generalizes the result above for all
possible joint distributions of the random demands.

Suppose now that in a given period, coalition S ⊆ N decides on an optimal or-
der size qS . Then, at the end of the period, each player i ∈ S observes its demand
realization, say q̂i . The total demand realization for S is q̂(S) = ∑

i∈S q̂i . Just
as for a single store there are two possibilities: (1) q̂(S) ≤ qS , and the cost for
this centralized system is h(qS − q̂(S)); (2) q̂(S) ≥ qS and the cost is equal to
p(q̂(S)− qS).

The newsvendor realization game (henceforth R-game), (N , cR), is defined by
cR(S) := max

{
p(q̂(S)− qS), h(qS − q̂(S))

}
for all ∅ �= S ⊆ N , where qS is the

demand of S in the E-game. This non-negative game measures the actual cost of the
demand realization for every S ⊆ N . Hartman and Dror (2005) shows that R-games
are not balanced in general (i.e., the core may be empty), by providing a realization
example for joint multivariate normal demand distribution.

The reader may note that E-games and R-games are related by means of a long-term
expectation property: E [cR(S)] = E

[
�(x, q̂(S))

] = cE (S) for all ∅ �= S ⊆ N .

The above property means that the long-term average cost of coalition S, for re-
peated realizations of the actual cost game cR , is the same as its cost in the expected
cost game cE , provided that the underlying individual demand distributions do not
change.

To complete this section we introduce a dynamic analysis of the newsvendor sit-
uation where we take into account the repeated approach of newsvendor realization
games.

Consider the stores over any finite horizon T (T is a positive integer counting the
number of single periods in the finite horizon). In every period t we observe actual
demands quantities q̂ t

i , for all i = 1, . . . , n. For a fixed t , those are realizations of
the demand random variables. The sequence of demand realizations faced by store
i ,
{
q̂ t

i

}
t≥1, is ruled by the distribution function Fi , and we assume that q̂ t

i and q̂ t ′
i

are independent for any t �= t ′. Hence q̂ t
i and q̂ t ′

i are independent and identically
distributed (i.i.d.) random variables for all t �= t ′.

Consider, for each store i , i = 1, . . . , n, the average sequence of demand realiza-
tions

{
q̃T

i

}
T≥1, where q̃T

i := 1
T

∑T
t=1 q̂ t

i .

We define the dynamic newsvendor realization game (DR-game) at stage
T, (N , c̃T

R), by the following characteristic function:
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c̃T
R(S) := max{p(q̃T (S)− qS), h(qS − q̃T (S))}, (1)

for all ∅ �= S ⊆ N , where q̃T (S) =∑
i∈S q̃T

i .
Given a sequence of actual realizations of demand q̂ = {q̂T }T≥1 with q̂T =

(q̂T
i )i=1,...,n , DR -games (N , c̃T

R(q̂))T≥1 are standard TU cost cooperative games.

The stochastic nature of the DR-games (N , c̃T
R(q̂))T≥1 is ruled by the random

demands from where we draw the (q̂) realizations and it is described through the
sequences of random variables {c̃T

R(S)}T≥1 for all S ⊆ N . Note that the probability
distribution function of the random variable c̃T

R(S) is given by:

P
[
c̃T

R(S) ≤ r
]
= P

[
all the outcomes of q̂ t

i , i = 1, . . . , n, t = 1, . . . , T such that
max{p(q̃T (S)− qS), h(qS − q̃T (S))} ≤ r

]
,

for all r ∈ R. Hence, the class of DR-games is a subclass of the class of TU cooper-
ative games with random worths. Notice that for any q̂ , the DR-game at stage T = 1
coincides with the R-game; i.e., c̃1

R(q̂)(S) = cR(S) for all S ⊆ N .
There are few models of cooperative games where the worth of a coalition may

be uncertain; these games are called stochastic cooperative games. For a clear and
detailed overview see Suijs (2000) (see also Granot 1977). Fernandez et al. (2002)
introduce cooperative games with random payoffs. The random payoffs are compared
by means of stochastic orders. Timmer et al. (2003, 2005) and Timmer (2006) study a
model where the stochastic value of coalitions depends on a set of actions that every
coalition can take. Several solution concepts (Core, Shapley-like, compromise value)
for all the above stochastic games have been analyzed.

In this paper, we focus on solutions for DR-games using dynamic (time dependent)
processes. Our analysis builds upon the work of Lehrer (2002a,b).

3 Repeated allocation processes

In real-life we may expect players to monitor their costs of inventory centralization one
period at a time and, accordingly, form an “ opinion/response” regarding the fairness
of their cost allocations. From now on, we focus on a repeated allocation process.

Lehrer (2002a) describes four allocation rules in a stylized cooperative game re-
peated an infinite number of times. At each time period the same game is played with
a fixed budget of size B that has to be distributed among the players in a finite set N .
The game has its characteristic function v with the interpretation that v(S) represents
the needs of coalition S ⊆ N . The allocation at period t, t = 0, 1, 2, . . . is a vector
at = (ai

t ), where ai
t is the portion of the budget B allocated to player i ∈ N at time t .

An allocation rule determines the allocation at time T, aT , as a function of v and of
all at , t < T . The sequence (at )t≥1 is the allocation process induced by the rule.

The empirical distribution of the budget among the players is, at any stage, an
allocation of the budget. We focus on the first two types of processes introduced by
Lehrer, to be implemented later on the DR -games at each stage T (see next section).
The first type of process is based on the idea that giving a budget to a player increases
the total well-being of the entire group. The player whose marginal contribution to
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this well-being is maximal will receive the budget. It is shown that any process of this
type generates allocations that converge to some least square value (introduced by
Ruiz et al. 1998) The second type of allocation process is defined inductively and a
player whose weighted actual surplus is nonnegative is chosen and given the entire
budget. This process converges either to the core of the game, when the game is bal-
anced, or to the least core. Convergence in this context means that the distance between
the core (or the least core) and the empirical sequence of allocations shrinks to zero.
The proofs of the above two types of allocation processes rely on a geometric principle
that lies behind Blackwell’s approachability result (Blackwell 1956; Lehrer 2002b).

Formally, let N be a finite set of players, where the number of players, |N |, is
n > 1. Consider a normalized cooperative game v (i.e., v(N ) = 1). Let A =
{(a1, a2, . . . , an) ∈ R

n : ∑n
i=1 ai = v(N ) = 1 and ai ≥ v({i})for alli ∈ N } be

the set of allocations.
An allocation rule R is a function R : ∪∞t=0 At → A, where At is the Cartesian

product of A with itself t times and A0 is a singleton that represents the empty history
of allocations.

Any allocation rule induces a sequence a1, a2, . . . of allocations in A as follows: a1
is the first allocation R prescribes, a2 = R(a1), a3 = R(a1, a2), etc. This sequence is
called the allocation sequence induced by R. For any time t , denote by at the historical
distribution of the budget up to time t . That is, ai

t is the frequency of the stages up to
time t, where player i ∈ N received the budget. For any S ⊆ N , let at (S) be

∑
i∈S ai

t .
Below we summarize the first two of Lehrer’s allocation rules by means of the

corresponding allocation process.

1. Processes that converge to the least square value (R1 allocation rule)
A coalition is chosen randomly according to the probability distribution (αS)S⊆N .
At time t + 1 the coalition S is assigned a weight proportional to the excess corre-
sponding to the allocation at , at (S)−v(S). At any time a player whose contribution
to the expected weighted welfare of society

∑
S⊆N αS (at (S)−v(S)) (Ii∈S−v(S)),

is maximal, is chosen (where Ii∈S−v(S) is 1−v(S) if i ∈ S and−v(S) otherwise).
This player receives the entire budget and is denoted player it+1.

Let R1 be the allocation rule induced by the above process (see Lehrer 2002a for
further details). The following theorem shows that this rule generates an allocation
sequence that converges to some least square value.

Theorem 3.1 (Lehrer 2002a). Let a1, a2, . . . be the allocation sequence induced
by R1. Then, at converges to the least square value of the game that corresponds
to the weights αS, S ⊆ N .

2. Processes that converge to the core and to the least core (R2 allocation rule) Let
v be a balanced game. Let S1, . . . , Sk, k = 2n − 1, be the list of all non-empty
coalitions of N . Denote by yi the vector in R

k whose lth coordinate is Ii∈Sl−v(Sl).
Two sequences are defined: the allocation process a1, a2, . . . of vectors in R

n , by
means of vectors of the standard basis of R

n , and an auxiliary sequence z1, z2, . . .

of vectors in R
k , by means of vectors yi in R

k . The number zl
t measures the histor-

ical average surplus of the coalition Sl up to stage t . At this stage the coalitions are
weighted with respect to these surpluses: those coalitions with a positive surplus
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are neglected while the other coalitions are assigned weights proportional to their
(negative) surplus (i.e., for such a coalition, say, Sl , the weight is −min(zl

t , 0)).
Then, a player i whose weighted actual surplus (i.e.,

∑k
l=1[−min(zl

t , 0)]
[Ii∈Sl − v(Sl)] is non-negative is chosen and is given the entire budget v(N ).
Let R2 be the allocation rule induced by the above process. The following theorem
shows that any limit point of the corresponding allocation sequence at is in the
core.

Theorem 3.2 (Lehrer 2002a). Let a1, a2, . . . be the allocation sequence induced
by R2. Then, at converges to the core of the game. That is, any accumulation point
of the sequence at is in the core.

Notice that in constructing the allocation process that converges to the core we
assumed that the game is balanced. As noted in Lehrer (2002a), rule R2 can be
modified in the case of an empty core to obtain an allocation sequence which
converges to a point in the least core (the intersection of all non-empty ε-cores).

4 Allocation processes for the dynamic newsvendor realization game

In this section, we prove that there exist Lehrer’s allocation processes (rules R1 or R2)
applied to the DR-games at each stage T , that converge almost surely (that is, the
set of outcomes where it does not converges has null probability) either to some least
square value or to the core of E-games.

We start proving a technical lemma that will be useful in our analysis. Previously,
given any TU game (N , c), we recall that the least square value (see Ruiz et al. 1998)
for a weight function α = (αS)S⊆N is:

L Sα(c) = (L Sα
1 (c), . . . , L Sα

n (c)),

where

L Sα
i (c) = c(N )

n
+ 1

nβ

⎡
⎣∑

S:i∈S

(n − s)α(S)c(S)−
∑

S:i �∈S

sα(S)c(S)

⎤
⎦

and β =
n−1∑
s=1

α(S)

(
n − 2

s − 1

)
.

Notice that the least square value for a weight function α can easily be extended to
stochastic cooperative games; in particular to DR-games. Indeed, take the continuous
functions g : R −→ R and fi : R2n−1 −→ R defined by

g(y) = max{p(y − qS), h(qS − y)},
fi (x) = g(xN )

n + 1
nβ

[∑
S:i∈S(n − s)α(S)g(xS)−∑S:i �∈S sα(S)g(xS)

]
,
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for all y ∈ R and x = (xS)S⊆N ∈ R
2n−1. Then, for all i = 1, . . . , n and all T ≥ 1,

L Sα
i

(
c̃T

R

)
= fi

((
c̃T

R(S)
)

S⊆N

)
(2)

is a random variable with values L Sα
i

(
c̃T

R(q̂)
) = fi

((
c̃T

R(q̂)(S)
)

S⊆N

)
, for any

sequence of actual realizations of demand q̂ .

Lemma 4.1 For any S ⊆ N and any weight function α (that does not depend on T ),

c̃T
R(S)

a.s.−→
T→∞ cE (S). (3)

L Sα
i

(
c̃T

R

)
a.s.−→

T→∞ L Sα
i (cE ) ∀i ∈ N . (4)

Proof Consider the continuous function g defined above. Recall that q̂ t (S) =∑
i∈S q̂t

i
and consider the sequence

{
q̂ t (S)

}
t≥1 . It is clear that the random variables in the

sequence are i.i.d. with mean value µS . Therefore, by the Strong Law of Large
Numbers,

q̃T (S) = 1

T

T∑
t=1

q̂ t (S)
a.s.−→

T→∞ µS .

Hence, by the continuity of g,

g
(

q̃T (S)
)
= c̃T

R(S)
a.s.−→

T→∞ g(µS) = cE (S)

which proves (3). Applying (3) we have

L Sα
i

(
c̃T

R

)
= fi

((
c̃T

R(S)
)

S⊆N

)
a.s.−→

T→∞ fi ((cE (S))S⊆N ) = L Sα
i (cE ).

This proves (4). �
Our approximation process consists of applying Lehrer’s allocation rules R1 and

R2 (described in Sect. 3) at each stage T to each one of our DR-games. We then
examine for the repeated realization process the rules’ properties.

Assume that we are given a generic game (N , c). Let {aRi (c)(l)}l≥1 denote Leh-
rer’s allocation sequence induced by Ri i = 1, 2. (By aRi (c)(l) we refer to the lth
element in the corresponding sequence.) Let {ā R1(c)(l)}l≥1 and {ā R2(c)(l)}l≥1 be the
allocation schemes converging to some least square value with weight function α (the
former) and converging to an element of the least core (the latter).

Notice that Lehrer’s allocation sequence induced by Ri i = 1, 2, can also be
extended to stochastic cooperative games, in particular to DR-games. Indeed, Leh-
rer’s allocation scheme applied to a DR-game

(
N , c̃T

R

)
is a random variable ā Ri

(
c̃T

R

)
,

with values ā Ri
(
c̃T

R(q̂)
)

for any sequence of actual realizations of demand q̂ .
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Our first theorem ensures the convergence of Lehrer’s {ā R1(c)(l)}l≥1 allocation
scheme, applied to DR-games, to some least square value of E-games. In this case,
we obtain that for any sequence of actual demand realizations the sequence of diag-
onal steps {ā R1

(
c̃T

R

)
(T )} (i.e. the one that chooses the T -th replication of Lehrer’s

R1-approach at stage T of the realization game) converges almost surely to some least
square value of the E-games.

Theorem 4.2 Let (N , cE ) be a newsvendor expected game. The diagonal sequence
{ā R1

(
c̃T

R

)
(T )}T≥1 converges almost surely to L Sα(cE ).

Proof First of all, we note that according to Theorem 3.1, for any sequence of actual
realizations of demand q̂ ,

ā R1
(

c̃T
R(q̂)

)
(l)

pointwise−→
l→∞ L Sα

(
c̃T

R(q̂)
)

, ∀T ≥ 1.

Therefore, applying the pointwise convergence of the above process together with (4)
we have the diagram:

L Sα
(
c̃T

R

) pointwise←−−−−−
l→∞ ā R1

(
c̃T

R

)
(l)

T→∞
⏐⏐�a.s.

L Sα(cE ).

Hence, taking any infinite subsequence with increasing indexes in (l, T ) we obtain
almost sure convergence to L Sα(cE ). In particular, following the diagonal sequence,
namely taking indexes (T, T ), T ≥ 1, we get the result in the theorem. �

Our next result explains the approachability of
{
ā R2(c)(l)

}
l≥1 allocation scheme,

applied to DR-games, to the core of E-games. In this case, we prove that any accumu-
lation point of the sequence of diagonal steps

{
ā R2

(
c̃T

R

)
(T )

}
converges almost surely

to a point in the core of E-games.
The core core(cE ) of the game (cE , N ) is:

core(cE ) =
{

x ∈ R
n :

∑
i∈S

xi ≤ cE (S), ∀S ⊂ N ,
∑
i∈N

xi = cE (N )

}
.

The same definition is applicable to the core of the realization game defined on a
sequence of actual realizations of demand q̂ = {

q̂ t
}

t≤T at any stage T ; i.e.

core
(
c̃T

R(q̂)
)
. Analogously, the ε-core of that game for any ε > 0 is:

core
(

c̃T
R(q̂), ε

)
=
{

x ∈ R
n : x(S) ≤ c̃T

R(q̂)(S)+ ε, S ⊂ N ; x(N ) = c̃T
R(q̂)(N )

}
,

and the least core is:

Lcore
(

c̃T
R(q̂)

)
=

⋂
core

(
c̃T

R (q̂),ε
) �=∅

core
(

c̃T
R(q̂), ε

)
.
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However, how to define core
(
c̃T

R

)
and core

(
c̃T

R , ε
)

is not clear since c̃T
R is a stochastic

cooperative game at each stage T. Therefore, we must first define these sets.
First, we have to extend the concept of efficiency. Note that when c̃T

R(N ) is an
absolutely continuous random variable, the event c̃T

R(N ) = x(N ) has null probability.
Thus, the induced concept of core would be a set with null probability. To overcome
this difficulty, we define efficiency through a significance level around the average
value of the random variable.

Given a random variable Y with E(Y ) = ȳ and a significance level β, 0 ≤ β ≤ 1,
let φ(β) = inf{φ′ : P[|Y − ȳ| ≤ φ′] ≥ β}. We say that a vector x is φ(β)-efficient if
|x(N )− ȳ| ≤ φ(β).

In our setting core
(
c̃T

R

)
and core

(
c̃T

R , ε
)

are random sets. Therefore, to define these
sets we have to state the significance level βT of that efficiency, which in turns induces
the values φT (βT ). For simplicity, we denote those values φT (βT ) as φT , when no
confusion is possible. Then, the probability of an allocation x to be in those cores is
given as:

P
[
x ∈ core

(
c̃T

R

)]
= P

[
x(S) ≤ c̃T

R(S),∀S ⊂ N ; ∣∣x(N )− E
(

c̃T
R(N )

) ∣∣ ≤ φT

]
,

(5)

P
[
x ∈ core

(
c̃T

R , ε
)]

= P
[
x(S) ≤ c̃T

R(S)+ ε,∀S ⊂ N ; ∣∣x(N )− E
(

c̃T
R(N )

) ∣∣ ≤ φT

]
. (6)

Note that setting βT = 1 for all T , provided that φT is not identically equal to+∞,
we have by (3) that φT →

T→∞ 0.

Then, x ∈ core
(
c̃T

R

)
or core

(
c̃T

R , ε
)

almost surely if and only if P
[
x ∈ core

(
c̃T

R

)] =
1 or P

[
x ∈ core

(
c̃T

R , ε
)] = 1, respectively.

Theorem 4.3 Let (N , cE ) be a newsvendor expected game. Then any accumulation
point of the sequence

{
ā R2

(
c̃T

R

)
(T )

}
T≥1 belongs to core(cE ) almost surely.

Proof First, we prove that there exist x̂ ∈ R
n such that

∣∣̂x(N ) − E
(
c̃T

R(N )
) ∣∣ ≤

φT and a sequence {εT }T≥1, which converges almost surely to zero, such that x̂ ∈
core

(
c̃T

R , εT
)

a.s.
Define εT (S) := cE (S)−c̃T

R(S), for all S ⊂ N and let {φT }T any sequence converg-

ing to 0. By Lemma 4.1, εT (S)
a.s.−→

T→∞ 0 for all S ⊂ N . Let εT := maxS⊂N {|εT (S)|}
for all T ≥ 1. Then, for all δ > 0, there exists T (δ) such that for all T > T (δ), εT < δ

almost surely.
Suppose that for all x ∈ R

n , such that
∣∣x(N )− E

(
c̃T

R(N )
) ∣∣ ≤ φT (φT induced by

the significance level βT ), P
[
x /∈ core

(
c̃T

R , εT
)]

> 0. Then,

P
[
x(S) > c̃T

R(S)+ εT , for some S ⊂ N
]

> 0. (7)
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Now, since for any S ⊂ N , the condition x(S) > c̃T
R(S)+ εT implies x(S) > cE (S),

we obtain by (7) that

P [x(S) > cE (S), for some S ⊂ N ] > 0,

which is a contradiction, since taking x∗ ∈ core(cE ),

P[x∗(S) > cE (S), for some S ⊂ N ] = 0.

Hence, we conclude that there exists x̂ ∈ R
n such that

∣∣̂x(N )− E
(
c̃T

R(N )
) ∣∣ ≤ φT

satisfying P
[̂
x ∈ core

(
c̃T

R , εT
)] = 1.

Next, we prove that for any realization of actual demands at stage T , q̂1, . . . , q̂T ,

any accumulation point xT of Lehrer’s R2 repeated allocation process, constructed on
the game

(
N , c̃T

R(q̂)
)
, satisfies P

[
xT ∈ core

(
c̃T

R , εT
)] = 1.

Indeed,

P
[
xT ∈ core

(
c̃T

R , εT

)]

= P

[{
q̂

/
xT (q̂)(S) ≤ c̃T

R(q̂)(S)+ εT (q̂),∀S ⊂ N ;∣∣xT (q̂)(N )− E
(
c̃T

R(q̂)(N )
) ∣∣ ≤ φT

}]
=1,

since Theorem 3.2 ensures that for any realization q̂, xT (q̂) ∈ core
(
c̃T

R(q̂), εT (q̂)
)

provided that this set is not empty.
Next, we prove that for any accumulation point x of a sequence

{
xT
}

T≥1 such that

xT ∈ core
(
c̃T

R , εT
)

a.s. for all T > 1, then x ∈ core(cE ) almost surely.

By Lemma 4.1, c̃T
R(S)

a.s.−→
T→∞ cE (S) for all S. Thus, for any δ > 0 small enough,

there exists T (δ) such that for all T > T (δ): c̃T
R(S) < cE (S)+ δ almost surely. Since

xT ∈ core
(
c̃T

R , εT
)

almost surely, it follows that:

xT (S) ≤ c̃T
R(S)+ εT < cE (S)+ δ + εT , a.s. and for all S ⊂ N ,

φT ≥
∣∣xT (N )− E

(
c̃T

R(N )
) ∣∣,

for all T > T (δ).
Hence, as δ→ 0 we have that T (δ)→∞, and the accumulation point x satisfies:

x(S) ≤ cE (S) for all S ⊂ N , a.s. and |x(N )− cE (N )| ≤ 0, (8)

since εT (S)
a.s.−→

T→∞ 0 for all S ⊆ N and φT →
T→∞ 0.

Thus, any accumulation point of the sequence
{
ā R2

(
c̃T

R

)
(T )

}
T≥1 belongs to

core
(
c̃T

R , εT
)

almost surely for all T > 1. Hence, applying (8), any accumulation
point of

{
ā R2

(
c̃T

R

)
(T )

}
belongs to core(cE ) almost surely. �
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5 Final comments and remarks

5.1 Allocation processes for dynamic cost games

In the previous section we present two allocation processes for dynamic newsvendor
realization games. Each of them was based on applying Lehrer’s allocation processes
induced by rules R1 and R2, respectively, to DR-games at each stage T ≥ 1.

In this subsection we extend all the above results to a more general framework. We
state two allocation processes for general dynamic cost games, which are also based
on applying Lehrer’s allocation processes (rules R1 or R2).

Let (N , c) be a non-negative balanced TU cost game. Let {(N , ct )}t≥1 (t is no
longer an index for a time period like in a newsvendor game but simply an index of a
game in a sequence) be a sequence of non-negative stochastic cooperative games such
that

ct (S)
a.s.−→

t→∞ c(S), for any S ⊆ N .

It is clear that for a given scenario q̂ of the sequence of stochastic cooperative games
(that is, a realization of the stochastic behavior), (N , ct (q̂))t≥1 are standard TU cost
games. Therefore, we can apply Lehrer’s Ri -allocation schemes, i = 1, 2, to each of
them.

Then we can obtain similar results to those in Theorems 4.2, and 4.3.

Theorem 5.1 Let (N , c) be a non-negative balanced TU cost game and
{
(N , ct )

}
t≥1

a sequence of non-negative cooperative games satisfying that ct (S)
a.s.−→ c(S), for all

S ⊂ N. Then, the diagonal sequence
{
ā R1(ct )(t)

}
t≥1 satisfies:

āR1(ct )(t)
a.s.−→

t→∞ L Sα(c).

Theorem 5.2 Let (N , c) be a non-negative balanced TU cost game and
{
(N , ct )

}
t≥1 a

sequence of non-negative stochastic cooperative games satisfying that ct (S)
a.s.−→ c(S),

for all S ⊂ N. Then, any accumulation point of the sequence
{
ā R2(ct )(t)

}
t≥1 belongs

to core(c) almost surely.

5.2 Removing the independence hypothesis

The approachability results for the DR-games can be further extended removing
the independence hypothesis of the sequence of players’ demand at different stages.
Instead, we will require the stochastic processes {q̂ t

i }t≥1 to be strongly stationary for
any i ∈ N . Under this hypothesis the sequences {q̂ t (S)}t≥1 inherit the same charac-
ter (strongly stationary) and by the ergodic theorem (see Feller 1966) the sequences
{q̃T (S)}T≥1, where q̃T (S) = 1

T

∑T
t=1 q̂ t (S), converge almost surely to a random

variable, YS , satisfying E[YS] = µS for any S ⊆ N .
Under this hypothesis one can extend, mutatis mutandis, Lemma 4.1 as follows:
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Lemma 5.3 For any S ⊆ N and any weight function α (which does not depend on
T ),

c̃T
R(S)

a.s.−→
T→∞ YS where E[YS] = cE (S). (9)

L Sα
i

(
c̃T

R

)
a.s.−→

T→∞ YL Si where E[YL Si ] = L Sα
i (cE ) ∀i ∈ N . (10)

Using this lemma we get similar results to Theorem 4.2.

Theorem 5.4 Let (N , cE ) be a newsvendor expected game. The diagonal sequence{
ā R1

(
c̃T

R

)
(T )

}
T≥1 satisfies:

āR1
(

c̃T
R

)
(T )

a.s.−→
T→∞ YL Si , where E[YL Si ] = L Sα

i (cE ), ∀i = 1, . . . , n.

The extension of Theorem 4.3 seems to be more involved and needs further investi-
gation. The main difference is that the sequence of characteristic functions converges
now to a random vector Y = {YS}S⊆N and therefore the limit defines a random set
core(Y ). The probability of an allocation to belong to core(Y ) is given by:

P[x ∈ core(Y )] = P
[

x(S) ≤ YS,∀S ⊂ N ; |x(N )− E(YN )| ≤ φY (β)
]
, (11)

for a significance level of efficiency β. Analogously, we introduce core(Y, ε) as the
random set defined by

P[x ∈ core(Y, ε)] = P [x(S) ≤ YS + ε, ∀S ⊂ N ; |x(N )− E(YN )| ≤ φY (β)] ,

(12)
where

φY (β) := inf
{
δ
/

P[|E(YN )− YN | ≤ δ] ≥ β
}
.

Theorem 5.5 Suppose that YS ≥ 0 for all S ⊆ N, φY (1) < +∞ and for some T ′ > 1
there exists x ∈ core(Y ) almost surely satisfying

∣∣x(N ) − E
(
c̃T

R(N )
) ∣∣ ≤ φT for all

T ≥ T ′. Then, any accumulation point x̄ of the sequence
{
ā R2

(
c̃T

R

)
(T )

}
T≥1 belongs

to core(Y ) almost surely.

Proof First, we prove that there exist x̂ ∈ R
n such that

∣∣̂x(N )−E
(
c̃T

R(N )
) ∣∣ ≤ φT and

a sequence {εT }T≥1 which converges almost surely to zero such that
P
[̂
x ∈ core

(
c̃T

R , εT
)] = 1.

Define εT (S) := YS−c̃T
R(S), for all S ⊂ N and let {φT }T be a sequence converging

to 0. By Lemma 5.3, εT (S)
a.s.−→

T→∞ 0 for all S ⊆ N . Set εT := maxS⊆N {|εT (S)|}, for

all T ≥ 1. Then, for all δ > 0, ∃T (δ) such that for all T > T (δ), εT < δ almost
surely.

Suppose that for all x ∈ R
n such that

∣∣x(N ) − E
(
c̃T

R(N )
) ∣∣ ≤ φT (being φT the

threshold induced by the efficiency level βT ), P
[
x /∈ core

(
c̃T

R , εT
)]

> 0.
Then

P
[
x(S) > c̃T

R(S)+ εT , for some S ⊂ N
]

> 0. (13)
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Now taking into account that x(S) > c̃T
R(S) + εT a.s. implies x(S) > YS a.s., we

obtain by (13) that
P [x(S) > YS, for some S ⊂ N ] > 0,

which is a contradiction, since taking x∗ ∈ core(Y ) a.s. satisfying
∣∣x∗(N ) −

E
(
c̃T

R(N )
) ∣∣ ≤ φT for all T ≥ T ′, we have

P[x∗(S) > YS, for some S ⊂ N ] = 0.

Hence, there exists x̂ ∈ R
n such that P [̂x ∈ core(c̃T

R , εT )] = 1 for all T ≥ T ′.
Second, by Theorem 4.3, any accumulation point xT of Lehrer’s R2 repeated

allocation process, at stage T , satisfies P
[
xT ∈ core

(
c̃T

R , εT
)] = 1.

Then, we prove that for any accumulation point x of a sequence {xT }T≥1 such that
xT ∈ core

(
c̃T

R , εT
)

a.s. for all T > T ′, one has that x ∈ core(Y ) almost surely.

Since any c̃T
R(S)

a.s.−→
T→∞ YS for all S. Thus, for any δ > 0, small enough, there

exists T (δ) such that for all T > T (δ): c̃T
R(S) < YS + δ almost surely. Now, because

xT ∈ core(c̃T
R , εT ) almost surely, it follows that:

xT (S) ≤ c̃T
R(S)+ εT < YS + δ + εT , a.s.,

φT ≥
∣∣xT (N )− E

(
c̃T

R(N )
) ∣∣,

for all T > T (δ) and S ⊂ N .

Hence, as δ→ 0 we have that T (δ)→∞ and the accumulation point x satisfies:

x(S) ≤ YS for all S ⊂ N , and |x(N )− E(YN )| ≤ φY , (14)

almost surely since εT (S)
a.s.−→

T→∞ 0 for all S ⊆ N and φT →
T→∞ φY .

Any accumulation point of the sequence
{
ā R2

(
c̃T

R

)
(T )

}
T≥1 belongs to

core
(
c̃T

R , εT
)

almost surely for all T > T ′. Hence, applying (14) any accumulation
point of

{
ā R2

(
c̃T

R

)
(T )

}
belongs to core(Y ) almost surely.

References

Anupindi R, Bassok Y (1999) Centralization of stocks: retailers vs. manufacturer. Manage Sci 45:178–191
Blackwell D (1956) An analog of the MinMax Theorem for vector payoffs. Pacific J Math 6:1–8
Burer S, Dror M (2007) Convex optimization of centralized inventory operation (submitted)
Chen M-S, Lin C-T (1989) Effects of centralization on expected costs in a multi-location newsboy problem.

J Oper Res Soc 40:597–602
Eppen GD (1979) Effects of centralization on expected costs in a multi-location newsboy problem. Manage

Sci 25:498–501
Feller W (1966) An introduction to probability. Theory and its applications, vol. II. Wiley, New York
Fernandez FR, Puerto J, Zafra MJ (2002) Cores of stochastic cooperative games. Int Game Theory Rev

4(3):265–280
Granot D (1977) Cooperative games in stochastic function form. Manage Sci 23:621–630
Hartman BC, Dror M (1996) Cost allocation in continuous review inventory models. Naval Res Logistics

J 43:549–561

123



Dynamic realization games in newsvendor inventory centralization

Hartman BC, Dror M (2003) Optimizing centralized inventory operations in a cooperative game theory
setting. IIE Trans Oper Eng 35:243–257

Hartman BC, Dror M (2005) Allocation of gains from inventory centralization in newsvendor environments.
IIE Trans Scheduling Logistics 37:93–107

Hartman BC, Dror M, Shaked M (2000) Cores of inventory centralization games. Games Econ Behav
31:26–49

Lehrer E (2002a) Allocation process in cooperative games. Int J Game Theory 31:341–351
Lehrer E (2002b) Approachability in infinite dimensional spaces. Int J Game Theory 31:253–268
Muller A, Scarsini M, Shaked M (2002) The newsvendor game has a nonempty core. Games Econ Behav

38:118–126
Naurus JA, Anderson JC (1996) Rethinking distribution. Harvard Bus Rev 74(4):113–120
Parlar M (1988) Game theoretic analysis of the substitutable product inventory problem with random

demands. Naval Research Logistics 35:397–409
Ruiz LM, Valenciano F, Zarzuelo JM (1998) The family of least square values for transferable utility games.

Games Econ Behav 24:109–130
Slikker M, Fransoo J, Wouters M (2005) Cooperation between multiple news-vendors with transshipment.

Eur J Oper Res 167:370–380
Suijs J (2000) Cooperative decision-making under risk. Kluwer, Boston
Timmer J (2006) The compromise value for cooperative games with random payoffs. Math Methods Oper

Res 64:95–106
Timmer J, Borm P, Tijs S (2003) On three Shapley-like solutions for cooperative games with random

payoffs. Int J Game Theory 32:595–613
Timmer J, Borm P, Tijs S (2005) Convexity in stochastic cooperative situations. Int Game Theory Rev

7:25–42

123


	Dynamic realization games in newsvendor inventory centralization
	Abstract
	Introduction
	Inventory centralization in newsvendor environments
	Repeated allocation processes
	Allocation processes for the dynamic newsvendor realization game
	Final comments and remarks
	Allocation processes for dynamic cost games
	Removing the independence hypothesis
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


